Untitled Document
Untitled Document
> Archives > Current Issues
JEET, Vol. 13, No. 6, November 2018
Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization
Xiaohui Xiao
Area D - Information and Control
Abstract Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.
Keyword Biped robot,Chaos,Multi-variable optimal design,Passive dynamic walking,PSO.
PDF
Untitled Document