Untitled Document
Untitled Document
> Archives > Current Issues
JEET, Vol. 13, No. 2, March 2018
Smart Air Condition Load Forecasting based on Thermal Dynamic Model and Finite Memory Estimation for Peak-energy Distribution
Myo Taeg Lim
Area A - Electric Power Engineering
Abstract In this paper, we propose a new load forecasting method for smart air conditioning (A/C) based on the modified thermodynamics of indoor temperature and the unbiased finite memory estimator (UFME). Based on modified first-order thermodynamics, the dynamic behavior of indoor temperature can be described by the time-domain state-space model, and an accurate estimate of indoor temperature can be achieved by the proposed UFME. In addition, a reliable A/C load forecast can be obtained using the proposed method. Our study involves the experimental validation of the proposed A/C load forecasting method and communication construction between DR server and HEMS in a test bed. Through experimental data sets, the effectiveness of the proposed estimation method is validated.
Keyword Home energy management system(HEMS),Air condition(A/C),Demand response(DR),Unbiased finite memory estimation (UFME),Thermodynamic model
Untitled Document