Untitled Document
Untitled Document
> Archives > Current Issues
JEET, Vol. 11, No. 1, January 2016
A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes
Hongwei Li
Area A - Electric Power Engineering
Abstract Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.
Keyword Distribution transformer,Meshed distribution system,Node-branch incidence matrix,Power flow,PV nodes
PDF
Untitled Document